If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+16t-60=0
a = 1; b = 16; c = -60;
Δ = b2-4ac
Δ = 162-4·1·(-60)
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{31}}{2*1}=\frac{-16-4\sqrt{31}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{31}}{2*1}=\frac{-16+4\sqrt{31}}{2} $
| 6x-7(-2x+10)=13( | | 10x^2/5=x³ | | 4(y-1)=-4y+36 | | 10x^²/⁵=x³ | | 39c/39=-55c/39 | | 2c+c+c+c-5=15 | | 218=160-v | | 5/4a-9=-5 | | -33=-6v+3(v-2) | | 2/7=3/5+y | | (4x-5)(x-5)=-45x | | 4x7x=1-6- | | 12k+2K-13k+2K-2K=12 | | 5x+275=40x | | 2(1-x)=3(2x-1) | | 3(2x+5)=5x-7+x | | 2/9v=4 | | 250+30x=400+50x | | 3x+9-7x=3(x+6) | | 4(g-16)=12 | | -6w+-6w+w—17w+-13w=14 | | 17y=9y+24 | | 220=131-v | | 7t=5+7t | | 9-x=37-x | | 4(2x+5)=3x-10-x | | f(2)=5(2)-6 | | 8m+6=3m+51 | | -5+5(6x+4)=-155 | | -9b+-4b+17b=-20 | | 3(3+1)-8=14-2(3x-4) | | a^2+2a=45 |